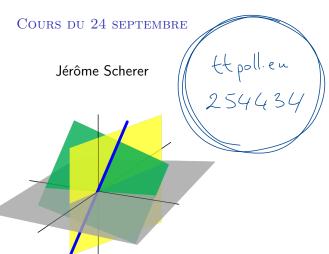
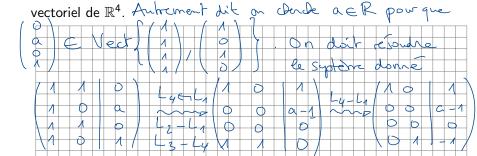
Algèbre Linéaire



FIN DU DEUXIÈME EXEMPLE.

Soit $a \in \mathbb{R}$ un paramètre et W l'ensemble

On cherche les valeurs de a pour lesquelles W est un sous-espace



SUITE 4 (-) b vector eor binaison sous-espare

RAPPELS

DÉFINITION

Soient $\overrightarrow{v_1}, \ldots, \overrightarrow{v_k}$ des vecteurs de \mathbb{R}^n . Une combinaison linéaire de ces vecteurs est un vecteur de la forme

$$\lambda_1 \overrightarrow{v_1} + \cdots + \lambda_k \overrightarrow{v_k}$$

pour des nombres réels $\lambda_1, \ldots, \lambda_k$.

L'ensemble de toutes ces combinaisons linéaires est appelé sous-espace engendré par $\overrightarrow{v_1}, \ldots, \overrightarrow{v_k}$ et on le note $\text{Vect}\{\overrightarrow{v_1}, \ldots, \overrightarrow{v_k}\}.$

Le sous-espace engendré par un vecteur non nul est une droite passant par l'origine, deux vecteurs non colinéaires engendrent un plan, etc.

1.7.1 Indépendance linéaire

DÉFINITION

On dit que les vecteurs v_1, \ldots, v_k d'un espace vectoriel V sont libres ou linéairement indépendants si la seule solution du système vectoriel

$$x_1 \cdot v_1 + \cdots + x_k \cdot v_k = 0$$

est la solution triviale $x_1 = x_2 = \cdots = x_k = 0$.

Si la famille $\{v_1, \ldots, v_k\}$ n'est pas libre, on dit que les vecteurs sont liés ou linéairement dépendants.

Exemple. Les vecteurs
$$\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$
, $\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$ et $\begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$ sont libres.

PREUVE ET AUTRES EXEMPLES. Deg. 22 0 **(1)** eguivalen Se 7,=72 Pamele Pamille est une . 1 +1 16.K d = 0 SSS $\alpha = 0$ = 0sin, cos libre dans Car a, sint

1.7.2 Terminologie

Si les vecteurs v_1, \ldots, v_k sont liés, il existe par définition des nombres réels $\alpha_1, \ldots, \alpha_k$ tels que

$$\alpha_1 \mathbf{v}_1 + \cdots + \alpha_k \mathbf{v}_k = \mathbf{0}$$

et au moins l'un de ces α_i est non nul!

On dit que v_i dépend linéairement des autres vecteurs. Attention ! Ce n'est pas forcément vrai pour chaque v_i . EXEMPLE. one des Bantres Odyndres lineaire des autres. combinatson Amol a+ -a + 1 طا

1.7.3 Cas particuliers

Le cas
$$k=1$$

Un vecteur v est linéairement indépendant si et seulement si il est non nul.

En effet si v=0, alors le système $x\cdot v=0$ admet une infinité de solutions. Par contre, si $v\neq 0$, alors la seule solution est x=0.

PROPOSITION

Toute famille de vecteurs contenant le vecteur nul est liée.

Preuve. On a toujours
$$1 \cdot 0 + 0 \cdot v_2 + \cdots + 0 \cdot v_k = 0$$
.

Le cas
$$k=2$$

Deux vecteurs \overrightarrow{V} et \overrightarrow{w} de \mathbb{R}^n sont linéairement indépendants si et seulement si ils ne sont pas colinéaires.

DÉMONSTRATION

Supposons que les vecteurs sont colinéaires, disons $\overrightarrow{w} = \alpha \overrightarrow{v}$. Alors

$$\alpha \overrightarrow{v} - \overrightarrow{w} = \overrightarrow{0}$$

est une combinaison linéaire qui donne le vecteur nul.

Supposons maintenant que les vecteurs \overrightarrow{v} et \overrightarrow{w} sont linéairement dépendants. Il existe alors une combinaison linéaire

$$\alpha \overrightarrow{v} + \beta \overrightarrow{w} = \overrightarrow{0}$$

et au moins l'un des coefficients α ou β est non nul.

$$\bullet$$
 $\alpha \neq 0$, alors $\overrightarrow{\mathbf{v}} = -\frac{\beta}{\alpha} \overrightarrow{\mathbf{w}}$;

1.7.4 Unicité des solutions

PROPOSITION

Soit A une matrice $m \times n$. Alors le système homogène $A\overrightarrow{x} = \overrightarrow{0}$ admet comme unique solution $\overrightarrow{x} = \overrightarrow{0}$ si et seulement si les colonnes de A sont linéairement indépendantes.

En effet si $\overrightarrow{a_1}, \dots, \overrightarrow{a_n}$ sont les colonnes de A, le système homogène ci-dessus est équivalent au système vectoriel suivant :

$$x_1\overrightarrow{a_1} + \cdots + x_n\overrightarrow{a_n} = \overrightarrow{0}$$

COROLLAIRE

Si k > n, alors toute famille $\{\overrightarrow{v}_1, \dots, \overrightarrow{v}_k\}$ de \mathbb{R}^n est liée.

manie des wethiche au système plus wornes que de de a a Colonne purot inconne libre Same dens une 3 los est coline aires AVEA raisonnement sur whente ex Co des ombre de recteurs lo l est lies paire da Vectors mune Lome Pamille ne aire pare Mar Pamille whe SC لطا elle deux recters Colline aires

1.7.5 AGRANDIR UNE FAMILLE LIBRE

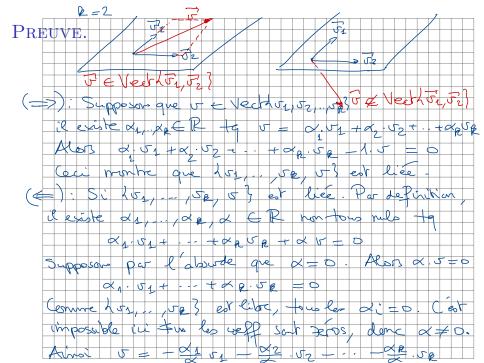
REMARQUE

Nous avons rencontré dans des exemples des familles génératrices d'un sous-espace W "trop grandes", on pouvait supprimer certains vecteurs sans perdre la propriété d'engendrer W. En contrepartie nous voyons maintenant qu'on peut ajouter des vecteurs à certaines familles libres sans perdre la liberté.

PROPOSITION

Soit v_1, \ldots, v_k une famille libre et v un vecteur d'un espace vectoriel V. Alors les vecteurs v_1, \ldots, v_k, v sont liés si et seulement si v appartient à $\mathrm{Vect}\{v_1, \ldots, v_k\}$. \triangle

 $A \rightleftharpoons B$



exprime comme combi lis de 11, ... Je EXEMPLE. libre libre